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Diffusion is one of the most fundamental properties of substances in 
solution. If, for example, sugar is placed in a beaker of water and allowed 
to stand, the sugar will subsequently be found in all parts of the water. 
The same is true of other soluble substances, and we say that they diffuse 
throughout the water occupying the volume of the liquid just as any gas 
occupies the volume in which i t  is confined. The diffusion of molecules 
through liquids is a common phenomenon, and it has beenextensively 
studied in a quantitative way. It should be remarked that in many cases 
the data of these experiments are conflicting and in other ways unsatis- 
factory, undoubtedly because each figure is usually the result of a pro- 
longed and laborious experiment which is dependent upon the most 
painstaking precautions and observations. 

These data have not always led to conclusions of theoretical importance 
because the kinetic theory of liquids is extremely difficult compared to  
that for gases and solids. However, for dilute solutions results of con- 
siderable significance can be obtained using the fundamental diffusion laws. 
In  more concentrated solutions the elementary laws do not hold, sup- 
posedly because of interactions between dissolved particles and with solvent 
molecules which lead to  association and solvation effects. Thus the situa- 
tion may be compared to  that of solutions of electrolytes, where the ideal 
limiting laws are known to be obeyed only in extremely dilute solutions 
and the deviations from them in more concentrated solutions are just be- 
ginning to  be understood. 

But within the limited scope suggested above, the writers feel that the 
diffusion theory has performed remarkably well in the interpretation of 
experimental data in a simple and straightforward way. It will be their 
attempt to  treat these achievements in a logical way, discussing the theory, 
experiment,  interpretation, and application of molecular diffusion in solution. 
At the same time it is desired to  suggest the subject as one worthy and 
necessary of further investigation and development. It is our regret that 
in connection with many ideas expressed it will be impossible to  give proper 
reference to  excellent articles which, appearing from time to time, have 
embodied these thoughts. 
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Diffusion experiments achieved considerable importance in the hands of 
Graham (27) who used them to differentiate between “crystalloids” and 
“colloids.” Both free diffusion and diffusion through membranes (dialysis) 
were used for this purpose. At least in the case of the free diffusion this 
separation depended upon a difference in the diffusion rate, and not on the 
fact that crystalloids diffuse and colloids do not. As this has become more 
clearly understood, it has become proper to speak of a “colloidal state of 
aggregation” rather than to  think of “colloidal substances.” As a matter 
of fact, both ordinary solutions and colloidal solutions are now recognized 
to be dispersed systems that comprise a dispersion medium and a dispersed 
part to  which, among other things, the molecular kinetic theory may be 
applied. It is meant to  imply here that the kinetic energy of suspended 
particles in a sol should be the same as the kinetic energy of molecules, 
and the colloidal solutions should give diffusion just as ordinary solutions 
do. We are thinking therefore in this article of molecular diffusion in its 
broader sense. 

It is also well to mention that, unless noted to the contrary, a free 
diffusion is being considered. The mathematical theory of obstructed and 
forced diffusions is quite different from that of free diffusion. This point 
is emphasized because in several recent investigations the attempt has been 
made to  avoid the experimental inconveniences of free diffusion by study- 
ing the rates of diffusion through porous membranes, giving a diffusion 
constant relative to some arbitrary standard. Diffusion constants ob- 
tained in this way hardly can be accepted as final when a demonstration 
of the sufficiency of the method is not provided. 

I. THEORY~ 

A. FREE DIFFUSION 

In  1855 Fick (18) stated the general law of linear diffusion as follows: 
The quantity of substance which diffuses through a given area is pro- 
portional to the difference between the concentration of two areas infinitely 
near to each other. Expressed mathematically, if we take two points in a 
solution a t  a distance apart dz, with difference in concentration at  these 
two points dc, concentration gradient in the direction x will be dc/dx and 

1 In  the preparation of this section the authors have drawn freely from several 
sources, among which may be mentioned: Byerly, Fourier Series and Spherical 
Harmonics, Ginn and Co., New York (1893); Ingersoll and Zobel, Mathematical 
Theory of Heat Conduction, Ginn and Co., New York (1913); Carslaw, Heat Con- 
duction, The MacMillan Co., New York (1921); Furth, Diffusion ohne Scheidewande, 
Handb. d. phys. u. techn. Mech. (Auerbach-Hort), Vol. 7, Barth, Leipzig (1931). 
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the amount of solute, dm, which diffuses through a cross-section q in time 
dt is 

dc 
dm = - Dq xx dt 

The minus sign means simply that the solute diffuses in the direction of 
decreasing concentration. This law, sometimes referred to  as the first law 
of Fick, was originally empirical in character, but it has long since been 
shown to be derivable from osmotic theory. It is a typical “dilute solu- 
tion” law. The constant D, the so-called diffusion constant or specific 
diffusion rate, measures the amount of solute which would diffuse across 
unit area under unit concentration gradient in unit time, provided the rate 
is constant during that time. 

The two independent variables, x and t, and two dependent ones, m and 
c, make its use somewhat cumbersome. However, it is possible to reduce 
the number of dependent variables by one, obtaining a t  the same time the 
general differential equation of diffusion known as the second 1aiT of Fick. 
If we consider an infinitesimal volume in a space bounded by planes at  the 
distances x and x + dx, the amount of solute which will accumulate in this 
volume in time dt will be the difference in the amount which enters across 
the plane a t  x and leaves across the plane a t  x + dx. It will be 

Now, since concentration is amount divided by volume, the corresponding 
concentration increase is 

qdx 
ac 
at This concentration increase is also expressed by the quantity - dt, there- 

fore 
ac 1 a(dm) 
at 9 ax 

Combination of this expression with the first law of Fick leads directly to 
the very important and general result 

-dt = - - 

The diffusion law may also be derived hydrodynamically. If the solu- 
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tion to which it is applied is sufficiently dilute for the use of the ideal gas 
law to measure its osmotic pressure we have, 

RT 
M p = c -  

where C is the concentration (amount per unit volume) and M is the molec- 
ular weight of the solute. Now, if we consider a volume element, dV, 
the force on the dissolved particles due to differences in p will be 

F = -  grad p dV 

But if m is the mass of a single particle, the total number of particles in dV 

is - dV, so that the force on a single particle will be c 
m 

m f = - - g r a d p  c 
Now, since M / m  = N ,  we can write 

f=--- RT grad C 
N C  

For the case of steady motion, that is, where each particle is given a con- 
stant velocity v ,  it is evident that 

1) = Bf 
where B is the “mobility” of the particle. It depends upon the size and 
shape of the particle and the viscosity of the medium in which it is sus- 
pended. Therefore, 

RT grad C 
N C 

v = - - B -  

Expressed in terms of the flow, J, which is by definition the product C - v ,  
we have, 

(3) J = C . 1 )  = - RT - B grad C = - D grad C 
N 

The diffusion equation is sometimes used in this simple and direct form, a 
good example of its application being found in the recent work of Onsager 
and Fuoss (66). The identity D = RT/N.B will be established in a 
later section. 

The diffusion law has different solutions according to the conditions 
imposed by the methods of carrying out the experiment. This may be 
illustrated best perhaps by working out the most general solution in the 
infinite first, and then showing how i t  is applied to specific problems. In 
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another section there are considered the modifications necessary when the 
diffusion takes place in such a way that the process is limited by the pres- 
ence of a boundary. 

I .  Solutions without jinite boundary 

The conditions which must be met by any physical solution are as follows: 

1. c = c ( x ,  t ) .  

2. When t = 0, c = f ( 2 ) .  

3. When t > 0, f (2)  can be differentiated. 

The general solution is obtained by assuming 

c = 9(z)\k(t) (4) 
This makes it possible to separate the variables in equation 2, giving two 
ordinary differential equations whose solutions are 

@ ( x )  = 0 cos k x  + y sin k x  

\k ( t )  = a 3 e - kgDt 

in which a, P,  y, and IC are real constants. Since any sum of solu- 
tions is also a solution, a new solution results if we add solutions of the 
form 5 and integrate over all positive values of k .  The constants 0 and 
7 are taken as functions of k .  The result of the operation is 

C = 1- ( g ( k )  cos k x  + h ( k )  sin kz)e-k 'Dt  dk (6) 

in which g(k )  and h ( k )  are arbitrary functions of k .  The problem now is 
to  see whether these functions can be so chosen that the second condition 
above is fulfilled, that is, we can write 

O W  

f ( x )  = (g (k )  cos k x  + h ( k )  sin k x )  dk (7) 

Fourier has found this to  be the case when the functions g ( k )  and h ( k )  are 
chosen in the following manner: 

Substitution of these values in equation 6 leads to the result 



176 J. W. WILLIAMS AND L. C. CADY 

Thus, i t  can be shown by an integration process that the general solution 
of Fick's second law for diffusion in the x direction is 

(a - 2)' 
f(a) e- x- da (9) 

1 

Di 3 t n n c e  f r o m  Boundary 
FIQ. 1. RELATIVE CONCENTRATION AS A FUNCTION OF DISTANCE FROM BOUNDARY. 

DIFFUSION FROM SOLUTION ACROSS BOUNDARY INTO SOLVENT 

By the introduction of the new variable 

a - 2  

y = i q z  
the general solution becomes 

(10) 1 +* c = -  d71. 1, f(x + 2y 4% e-y' ds 

The brief description of two very important special cases of the applica- 
tion of this equation to the diffusion of solutes will illustrate its use. It 
may be well to  recall that  in these cases the diffusion is not restricted by 
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the dimensions of the cell in which the process is taking place; in other 
words, the containing vessels are long enough and the time is short enough 
so that the concentration changes do not occur a t  their extreme ends. 

At time t = 0 the concen- 
tration of the solute in the positive half of the cell is Co, but in the negative 
half i t  is zero. Thus 

f(a) = 0, for CY < 0 

f(a) = Co, for a > 0 

Case I .  Diflusion from solution into solvent. 

Under these conditions 

t= 0.06 

t= 0.1 5 

- 1 0 - 9 - 8 - 7 - 6 - 5 - 1 ) - 3 - 2 - l  0 I 2 3 4 5 6 7 €3 9 I O  

Distance from Boundary 
FIQ. 2. RELATIVE CONCENTRATION AS A FUNCTION OF DISTANCE FROM BOUNDARY. 

DIFFUSION FROM THIN LAYER INTO SOLVENT 

where 

The progress of such a diffusion as a function of distance for definite times 
is shown by the accompanying graph (figure l),obtained from equation 11. 

At time t = 0 the concentration of 
the solute in the cylinder is zero except for an infinitely thin layer of thick- 

Case I I .  Diflusion from thin layer. 
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ness dx between the positive and negative halves of the vessel, in which i t  
becomes infinite as the thickness approaches zero. Thus, 

~ ( C Y )  = 0, for C Y ,  < 0 

 CY) d a  = 1, for CY = 0 
Under these conditions 

22 1 -- 
c =  2 v m e  4Dt 

Figure 2 shows the progress of this type of diffusion. Here C(s) is shown 
a t  a number of times t .  

I I .  Solutions with finite boundary 

In  the general solution of the linear problem it was assumed that the 
medium in which the diffusion took place extended to  infinity in both 
positive and negative directions. It is not difficult to extend this solution 
to  certain cases where the medium extends to infinity in the one direction 
but is bounded by a surface on the other side. This surface is conveniently 
chosen a t  position x = 0. In such an experiment with smooth and im- 
pervious boundary a t  right angles to  the direction of the diffusion, ac/ax = 
0 for x = 0, and the general solution of Fick's law assumes the form 

Corresponding to the second special case considered above, let us assume 
an experiment in which there is a very thin layer of diffusing solution 
under a very high column of dispersion medium. As before 

!(CY) da: = 1, for CY = 0 
and 

As might have been predicted, the concentration a t  any distance x in time 
t is twice that obtained before. 

Another important fnite boundary problem is the diffusion between 
parallel boundaries in the Y Z  planes, x = 0 and x = 1. At time t = 0, 
c = f(x) and 0 S x 5 1. It has already been shown that the expression 

e- k'Dt ( A  cos kx + B sin ks) 
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is a solution of the general diffusion law when A ,  B, and k are chosen 
properly. The boundary conditions of the problem demand that A = 0 
and kl = nn, where n = 1, 2, 3, . . . etc. The particular solution then 
becomes 

n W  na - - ~ t  B,  sin - z - e 1' 
1 

Any sum of linear solutions is also a solution, therefore 
7 1 w  

m 
na -- 12 Dt C = C B , .  sin - x . e 

n = l  

Such an infinite sum is a solution provided the series converges. The 
coefficients B,  may be obtained from conditions a t  the start of the experi- 
ment. It is required that 

f(z) = 3 B, sin E - 2  in the region 0 5 z 5 1 

Fourier has shown that this is fulfilled since f(z) can be represented by a 
series of sines, cosines or both, and the coefficients are 

1 
n = l  

na 
1 R, = l ' f ( a )  sin - a d a  

Thus 

This equation is an extremely important one because i t  is required for 
the calculation of the diffusion constant in several types of experiment. 

An important diffusion experiment makes use of conditions described 
by Stefan (79), as follows: 

At time t = 0 the space between planes z = 0 and z = h is filled 
with solution of concentration C = CO and the corresponding space between 
x = h and x = 1 is occupied by solvent, and c = 0. 

f(z) = Co, for 0 5 z < h 

f(z) = 0, for h < z 5 1 

In  this event, 

Transformations not detailed here lead to the final result 
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The use of this rather complicated formula may be simplified by choosing 
the experimental conditions in such a way that the ratio h/l  is some simple 
fraction. Its use is also rendered less tedious by the tables of Stefan (79) 
and Kawalki (40), which are constructed for the case where h = 1/4. If 
we know the amount of substance in the several layers into which the 
diffusing liquid can be divided, the diffusion constant D can be calculated. 

In  certain experiments it is important to know how much material has 
diffused from one layer into another in a given time. Thus, for the case in 
which h = 1/2, the quantity &, which has penetrated into the solvent, is 

Q = - L f D ( " )  ax ==- l d t  
2 

An additional type of experiment in which material is allowed to diffuse 
into a porous solid or gel from a stirred liquid in contact with it is of con- 
siderable chemical interest, but unfortunately the classical methods of 
Fourier analysis do not always provide adequate solution of the mathe- 
matical problem, and other treatments have been necessary. It is largely 
through the efforts of March and Weaver (49) and of Langer (47) that the 
coefficients of the several terms can now be determined, with the result 
that the specific diffusion rate into the porous solid or gel may be calcu- 
lated from the analysis of the concentration of the stirred liquid above it as 
a function of the time. 

The question may properly be raised at  this point whether a free or 
obstructed diffusion will take place under these conditions. Its answer 
will depend primarily upon the relative size of the pore and diffusing mole- 
cule, because i t  will determine whether or not the neighborhood of the 
extensive surfaces within the structure of the solid affects the nature or 
extent of the diffusion. There may be a suppression of the diffusion 
through the orientation and immobilization of solvent molecules adjacent 
to these surfaces; there may be mechanical blocking; there may be orienta- 
tion effects if the diffusing molecules differ from the spherical shape to any 
considerable degree-these and other factors would cause an obstructed 
diffusion where the pore diameters are not very much larger than those of 
the diffusing molecules. We shall see that experiments which permit the 
comparison of the obstructed and free diffusion rates may lead to valuable 
information with regard to the structure of the diaphragm. 

In the March and Weaver treatment of the problem there is assumed a 
mass of a material to be uniformly distributed, a t  time zero, in such a solid 
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of given depth. The solid is then covered with water to the same depth. 
The water is kept stirred during the experiment in which the material 
diffuses into the water. For the mathematical treatment there is obtained 
a Volterra integral equation of the second kind with discontinuous kernel 
to express the concentration in the liquid as a function of the time. The 
solution of this integral equation is obtained in terms of the roots of a 
transcendental equation and the roots of an infinite system of linear equa- 
tions. By means of the theory of singular integral equations, it is shown 
that the differential equation and boundary conditions possess but one 
solution of the required type. This solution is 

where V is the fraction of the material which has diffused from the solid, 
X is the ratio of the height of the solid to the height of the liquid 

t is the time, 
U + AVO = 1, and represents the sum of the solute in the solid 

and the quantities Bi and pi are more complicated functions which depend 
upon the boundary conditions, the time, and the diffusion constant. 

Complete details for the determination of these coefficients are given in 
the original article. After their evaluation the expression for the concen- 
tration in the liquid becomes 

above it, in this case unity, 

and water above, 

V = 3 - [0.327 e-4.117T + 0.0766 e-24.14T + 0.0306 e-63,6*T + 
0.0160 e-1232' + . . . . . .] 

where T = Dt/a2, D is the diffusion constant, t is the time, and a is the 
height of the solid or of the liquid column above it. The diffusion con- 
stant is obtained most readily by plotting V as a function of T, according 
to  this equation. The quantity V is the one determined experimentally 
as the time proceeds. For each value of V there is found on the graph the 
corresponding value of T ,  and since both a and t are known, the value of 
the diffusion constant is thereby fixed. 

B. FORCED DIFFUSION 

If there acts on a dissolved particle an external force f*, causing an 
additional velocity v*, then the additional flow is cv* = cEf* and the 
diffusion law assumes the form 

(19) 
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The statistical equilibrium or the distribution of concentration in the 
solution which is independent of the time is found by solving the equation 

In its general form the solution is 
lJ* 

c = uez"  + b 

in which u and b are arbitrary constants. 
conditions require that b = 0. 
solution takes the form of the well-known hyposometric law: 

In  many cases the boundary 
Thus for sedimentation equilibrium the 

- -. Mu z N 
---f'+ 

c = coe RT = coe RT 

In  this equation Q is the acceleration due to gravity. Particular solutions 
of the general equation (19) have been obtained for a number of purposes. 
To mention a single example, they have considerable use in sedimentation 
studies with colloidal solutions in which the additional forces are either 
gravitational or centrjfugal in character. 

Another extremely important case of a diffusion under the influence of 
an external force is found in the process taking place in a solution contain- 
ing electrolytes. Onsager and Fuoss (66), in a very complete treatment 
of the problem, have shown that fundamentally the diffusion and conduc- 
tion belong together, both being problems involving the general migration 
of ions. They have concerned themselves with the formulation of the 
general differential equations directly in terms of the "driving forces" or 
gradients of thermodynamic potentials, rather than in terms of osmotic 
pressures which are related to  thermodynamic potentials. In  the case of 
an electrolyte containing two kinds of ions where the assumption of com- 
plete ionization can be made, Nernst (57) in 1888 derived an expression 
for the diffusion constant based upon values of the ionic mobilities as 
determined by conductance and transference number measurements a t  
high dilution. This expression has been generalized by Noyes (30) to  give 
the following result : 

where U ,  and U ,  are the mobilities of the cation and anion, and 2, and 
2, are their valences. In  
the region of finite, but very dilute, solutions (Debye-Huckel region), 
deviations from a random arrangement affect the resistance to the motion 

This is a typical infinitely dilute solution law. 
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of the ions. A dissociation into ions which is practically complete is 
assumed. 

In  the conductance problem the mobility directly due to  the applied 
electrical field overcoming the ordinary friction of the solvent is modified, 
owing to  these deviations from a random arrangement by two forces, 
the electrical force of relaxation and the electrophoretic force. The dif- 
fusion of a simple electrolyte will be modified by the second of these forces 
only, since all the ions now migrate with the same velocity and no asym- 
metry can be developed in the ion atmospheres about them. The electro- 
phoretic force, on the other hand, is dependent upon a volume force acting 
in the ionic atmosphere, resulting in an alteration of the forces needed to 
make both ions move with the same velocity. In  a pure diffusion any 
velocity difference will be eliminated because of space charge effects. 
Onsager and Fuoss have shown that the electrophoretic effect may be 
divided into first and second order terms, both due to  the deviations of the 
ions from a random arrangement. The first order effect results because 
the anions in the neighborhood of a given anion are partially replaced by 
cations, and vice versa. When one species of ions is more mobile than the 
other the slower ions will move in a countercurrent and the more mobile 
ions will be aided by a motion of their environment. This is a typical 
“square root of the concentration” effect. The second term, which always 
decreases the resistance to  diffusion, depends upon an overall reduction 
of the mean distances between the ions in the sense that the distances 
between ions of opposite sign are reduced more than the distances between 
like ions are increased. 

In  more concentrated solutions the specific properties of electrolytes 
make the theoretical study a difficult one. If the amount of solvent is still 
large in comparison with that of the solute, the resistance offered by the 
medium will be practically independent of the concentration, but otherwise 
not. Haskell (30) has treated the situation which exists when both ions 
and undissociated molecules are present, by assuming that the frictional 
resistance encountered by an ion is different from that of the undissociated 
molecules, while the osmotic effects of ions and molecules are determined 
solely by their number, and has attempted to  measure the difference in 
diffusion rate existing between the dissociated and undissociated portions 
of the solute. In  general, ions are believed to move more rapidly than 
molecules because the diffusion rate usually increases with dilution. The 
equation set up is 
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where the subscripts 1 and 2 refer to neutral molecules and ions, respec- 
tively. The equation could be simplified so as to  contain only one inde- 
pendent variable c2, but it had to  be used in differential form. Equations 
containing only D1 and D2 were set up by assuming the concentration cz 
to  be proportional to  the specific conductance and the degree of dissociation 
to be measured by the classical Arrhenius conductance ratio. The best 
values of D1 and DZ were obtained from these equations using the method 
of least squares. The values of Dz obtained agree very well indeed with 
values calculated using the Nernst equation, and are claimed to confirm 
the assumptions involved in the calculations, but in the light of more 
recent theoretical developments it seems well to  reserve judgment until 
further experimental work can be done. 

DIFFUSION AND BROWNIAN MOVEMENT 

We owe the theory of the Brownian movement from the molecular 
kinetic point of view to Einstein (17) and to  Smoluchowski (76). The 
displacement of the molecule or particle during a certain interval of time 
characterizes the movement. Considering linear motion along one direc- 
tion (2) only, i t  is evident that positive and negative displacements are 
equally probable ; furthermore the smaller displacements are more probable 
than the larger ones. The probability of a horizontal displacement having 
a value between x and x + dx is 

where A i  is the mean of the square of the average displacement in a linear 
direction. 

It now turns out that the mean displacement A1 is quite simply related 
to the diffusion constant, a result of tremendous significance. The argu- 
ment of Einstein is as follows: Suppose the diffusion to take place across a 
plane in a horizontal tube, with concentrations c1 and c2 to  the left and 
right of this plane, respectively. In  the time t only those particles closer 
to the plane than the mean displacement AI can pass through it, and their 
number will be 1/2 Adcl - c2). If Al is small, 

Therefore the number of molecules passing the plane in unit time is 

1A;  dc 
2 t dx 

- _ - -  
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But, by Fick’s first law, the coefficient of diffusion D is the number of 
molecules passing unit cross-section in unit time when the concentration 
gradient - dc/dx = 1. Therefore, 

(24) 
1 A; 
2 t  

D = -- 

and 
2 2  

1 -- p =  ~ 

22/?rDte dx (25)  

which, as we have seen, is a solution of Fick’s second law. 

size of the molecules and the viscosity of the liquid. 
diffusing molecule is v 

Einstein has also shown the coefficient of diffusion to be related to  the 
If the velocity of a 

e, = Bf 
where f is the force exerted on the molecule and B is its “mobility” or the 
reciprocal of the frictional resistance experienced by it. If the concentra- 
tion of the solution before the plane is c, there will be cN molecules in- 
volved, with force F acting upon them, and 

1 u = - F F B  cN 

In  the diffusion the force acting is the osmotic pressure gradient, therefore 

d P  dc 
dx dx 

RT dc 
N dx 

F = - - = - R T -  

and 

(26) vc = - - B -  

Again making use of the first law of Fick it is evident that 

(27) 
RT 
N 

D = - B  

If the molecule can be assumed to be spherical, the frictional resistance 
may be expressed in terms of its radius, T ,  and the coefficient of friction 
of the medium, q ,  by means of Stokes’ law, provided certain other re- 
quirements are met, with the final result. 

This equation is known in the literature as the Stokes-Einstein law. 
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ROTARY DIFFUSION CONSTANT 

In addition to  the Brownian movement of translation, molecules and 
particles are undergoing rotational motion, owing to  an unequal distribu- 
tion of molecular impacts upon the faces of the parts of the particle on each 
side of the axes of rotation, and it follows from kinetic theory that the 
mean energy of rotation will be equal to  the mean energy of translation. 
It has been shown a number of times that the z of the deduction of the 
previous section may be replaced by another coordinate a, the angle of 
rotation, since a itself is not contained in the expression for the kinetic 
energy, and its derivative with respect to time, daldt, appears only in 
terms with constant coefficients. Thus a formula which looks just like 
equation 24 is obtained, that is, 

where D, is the rotary diffusion constant, and A: is the mean of the square 
of the average displacement in a rotary motion. 

In the case of the rotational motion, another law of Stokes becomes 
applicable provided the molecule can be considered to  be a sphere. This 
law says that if a torque of moment I be applied to  a sphere of radius r in 
a medium of viscosity q ,  the angular velocity acquired by the sphere will 

be - I Thus, the mobility of the system, B, referred to the angular 8rqr3' 
motion will be 

1 
8~771'3 

and the rotary diffusion constant becomes 

B = -  

The experimental determination of D, is a matter of considerable diffi- 
culty. It is true that Perrin (67) was able to make a direct microscopic 
observation of the mean rotation of particles, using mastic globules having 
a radius of 6.5 X cm. and with small enclosures of impurities on the 
surface of these globules to  enable him to observe the rotary motion, but in 
general it will not be possible to test the fundamental equations for the 
motion in this way. Very recently, however, theoretical developments 
have made available two types of experiment whereby this desired result 
may be realized, and i t  seems worth while to outline them. The first 
development is due to  Boeder ( 6 )  and depends upon the fact that the 
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optical birefringence induced by flow in solutions arises from the tendency 
of nonspherical particles t o  orient, owing to  the mechanical stresses within 
the fluid. This theory should be extended to the double refraction pro- 
duced by a magnetic field, because it seems possible under these conditions 
to  obtain a higher degree of precision. The second method for the deter- 
mination of a rotary diffusion constant is based upon the dipole theory of 
Debye (14). As far as we are aware it has not been specifically mentioned 
in this connection, although several investigators have proposed to use the 
dipole theory as a method for the determination of particle size. 

The principles upon which the theoretical work of Boeder is based may 
be given by three statements. 

1. The mechanical flow of the solution containing nonspherical molecules 
or particles causes an orientation of these odd-shaped units. 

2. This orientative tendency is opposed by their Brownian movement, 
the disarraying tendency of which is characterized by the diffusion con- 
stant, D,. 

3. If the character of the stresses arising from the viscous flow is known, 
and if the resulting equilibrium state between the two tendencies can be 
determined (measurement of double refraction), the diffusion constant can 
be found. 

To these statements a fourth and more obvious one, specifically men- 
tioned by Kuhn (44), may be added : 
4. Knowing the diffusion constant, information about the size and also 

the shape of the molecule or particle should result. 
Thus, the problem is one of a rotary diffusion influenced by an external 

force, in this case produced by the rotation of the inner cylinder of a 
Stormer type of viscometer. The effect of this rotation upon a particle 
with direction 4 is to give it an angular velocity 

(31) 
where /3 is the radial velocity gradient of the fluid motion, and w is the 
induced angular velocity of the long axis of the particle. 

The directional distribution of the particles is governed by the law of 
Fick, 

w ( 4 )  = - /3 sin%$ 

where p is the number of particles whose long axes lie in the interval 4 and 
4 + d4, or the direction density. The combined effect of these forces is 
given by the relation 
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At equilibrium a p / a t  = 0, therefore 

The solution of this equation, which we will not reproduce, gives the 
direction density p as a function of the direction angle 4, the radial velocity 
gradient of fluid motion p, and the diffusion constant, D,. The aim to 
find D, can be accomplished because means have been provided in the 
double refraction produced by the molecule or particle orientation to 
determine the state of equilibrium produced by a given constant rotation 
of the cylinder. 

The second method for the determination of D, depends upon the fre- 
quency dependence of the dielectric constant for a system composed of 
electrically dissymmetrical molecules suspended in a non-polar solvent 
medium. In such cases the dipole theory tells us there will be found to be 
a region in which the dielectric constant decreases as the frequency is 
increased, because a finite time is required for the orientation of the mole- 
cules in the electrical field, owing to the frictional resistance of the medium 
to the rotation. 

The quantitative argument may be suggested by saying that a t  suffi- 
ciently high frequencies the dielectric constant will fall off because the 
inner friction constant of the medium prevents the orientation of the dipole 
molecules. The polarization of the system resulting from the suspended 
molecules consists of two parts, a polarization due to  their deformation 
and a polarization due to their orientation, both of which contribute to the 
dielectric constant. The transition from the high dielectric constant, 
eo, to the low dielectric constant, ew, will occur in a frequency region defined 
approximately by the equation, 

VCT = 1 

where 7, called the time of relaxation of the molecules, is the time required 
for l / e t h  of the particles to assume a random distribution in the solution 
after the applied field has been removed, and v e  is the critical frequency 
of the alternating field. This means simply that the anomalous dispersion 
occurs when v c  and 1 / ~  are of the same order of magnitude. 

Actually the transition between the high and low values of the dielectric 
constant will take place in the frequency region defined by the expression, 

0.1 5 x 5 10 (34) 
In this equation 

€0 + 2 T r v  x=-- e, f 2 kT 
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where { is the “inner-frictional” constant, which because of its existence 
makes necessary the exertion of a torque to  rotate the molecules 
in the solution, 

v is the electrical frequency in cycles per second, 
k is the Boltzmann constant, and 
T is the absolute temperature. 

The theory tells us that the observed dielectric constant will assume a 
mean value (that is, the dielectric constant-frequency curve will pass 
through a point of inflection) a t  the point where x = 1. Under these 
conditions, 

with the result that 

+ 2 . -  1 
vcr = m 

EO + 2 2n 

In  order to  obtain this result the quantity { has been replaced by its 
equivalent r .2kT.  This equality is a consequence of the dipole theory 
which we cannot discuss here. 

We have seen that when a sphere of radius T rotates in a liquid of vis- 
cosity q the frictional torque is 8nqr3 times the angular velocity of the 
sphere, Therefore, for such a sphere, 

( = 87rqr3 (37) 

This application of the law of Stokes enables us to  express the time of 
relaxation or critical frequency in terms of either the radius of the molecule 
or the diffusion constant, since 

and 

The determination of the time of relaxation depends upon the experimental 
observation of E C ,  E,, and v,. 

The problem which had to be solved in working out the theory of the 
anomalous dispersion was how to find the distribution function of the 
electric moments of molecules affected by a field variable with time. The 
general mathematical basis for the solution of this problem was found in 
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the theory of the Brownian movement as developed by Einstein (17). 
The number of molecules whose moments entered in the direction of a given 
solid angle during an interval of time 61 was determined by two causes, one 
due to the applied alternating field, the other due to the rotary Brownian 
movement, and the effect of each had to be calculated. 

Problems of the type discussed in this article, both as regards linear and 
rotational displacements, become much more difficult when the shape of 
the molecule or particle involved deviates from that of a sphere. Some 
progress has been made in extending the necessary calculations to ellip- 
soidal and rod-shaped particles, particularly in connection with viscosity 
problems. Therefore i t  can be expected that the necessary modifications 
of the theoretical work described above will be made in the near future, so 
that the results may be applied to molecules deviating from the spherical 
or nearly spherical shape. This is particularly necessary in the cases where 
optical effects produced in solutions are used to study the distribution of 
the molecules. It is of interest to remark that only very recently the 
importance of taking the diffusion and Brownian movements into account 
has been recognized. In a sense these are all problems of a diffusion in- 
fluenced by an external force, and the effect of the diffusion can be neglected 
only when it  can be shown to be negligible in comparison with the effects 
produced by the other forces involved. 

11. EXPERIMENT 
A very large number of methods have been worked out for the experi- 

mental study of diffusion. Since there is involved the relationship of three 
variables-concentration, distance, and time-the variations in method 
are largely reflected in the different ways chosen to measure these variables. 
The methods also differ in the way in which the boundary conditions 
postulated in the mathematical formulation are met. It cannot be too 
strongly emphasized that the mathematical development determines, and 
hence must precede, the establishment of experimental conditions and the 
design of the apparatus to  be used. 

There are several obvious conditions which should be met by any experi- 
mental method, as follows: 

1. Change in concentration during an experiment should be small. 
2. There should be no decomposition, association, or chemical reac- 

3. The diffusion constant must be independent of the concentration 

4. There must be a sharp initial interface. 
5 .  There must be avoided any disturbance or temperature gradient 

tion of the components of the system. 

of the diffusing material, if Fick’s law is to be used. 

which would cause streaming or mixing. 
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6. There must be no volume change during the experiment. 
7. There must be available met'hods for accurate concentration deter- 

There exist in the literature several classifications of diffusion experi- 
ments. Of these, the methods of Cohen and Bruins (11) and of Furth (24) 
have much to  recommend them. However, we shall prefer to  adopt a 
double classification, dividing the experiments, first, on the basis of the 
kind of observation made (measurement of concentration), and second, 
with respect to  the type of diffusion experiment used. The tabulation 
based upon the kind of observation made to measure the concentration 
is independent of the way in which the experiment is set up to meet the 
boundary conditions postulated in the mathematical formulation. Prac- 
tically all of the methods used to  measure the concentration are applicable 
to either the continuous or interrupted type of experiment. 

minations. 

TABLE 1 

Concentration measurement in diffusion experiments 

1. Analytical 
a. Gravimetric 
b. Volumetric 
c. Colorimetric 
d. Density 

a. Potential difference 
b. Resistance 

2. Electrical 

3. Optical 
a. Particle count 
b. Refractive index 
c.  Light absorption 
d. Wave length 
e.  Optical rotation 
f .  Fluorescence 

The several kinds of observations made to measure concentration are 
suggested by table 1. They involve both physical and chemical methods 
of measurement. 

The analytical methods, because of their availability and application to 
the simpler types of diffusion apparatus, were commonly used by the 
earlier investigators. The determination of concentration by chemical 
analysis is usually made a t  the conclusion of the experiment on samples 
from different parts of the diffusion system. The course of the diffusion 
may be followed by chemical analyses only when the removal of the sample 
will not disturb the diffusion or cause an appreciable change of concentra- 
tion in the cell. Colorimetric determinations include solutions obtained by 
the use of indicators and turbid solutions as well as those which follow 
Beer's law. Both the hydrometer and balance have been used for density 
determinations. 

The electrical methods are restricted to systems whose components 
carry electrical charges. They are readily adapted to the making of con- 
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A. Observation of finite layers a t  the 

1. By separation with a pipet or 
siphon. 

2. By separation with a mechanical 
slicer. 

3. By the use of a porous diaphragm 
for separation in contact with 
a quiet liquid. 

conclusion of the experiment. 

tinuous observations, but a small error in the electromotive force measure- 
ment represents a significant deviation in the concentration. The poten- 
tials are not always readily reproducible at low concentrations; in fact, 
accurate measurements of density, chemical composition, and potential 
difference all require rather concentrated solutions. 

The optical methods are accurate, may usually be applied without dis- 
turbing the diffusing system, and may be used with organic substances. 
Further, dilute solutions may be used and only small amounts of material 
are required. The methods depending upon refractive index change are 
applicable only to those substances which do not absorb light. 

Having suggested the means by which concentration may be measured, 
we are now ready to classify the systems as to  type of apparatus used. It 
is convenient to describe them as: 

A. Experiments in which the prevailing average concentration in 

B. Continuous or intermittent observa- 
tion of an infinite number of 
layers. 

1. By observation along a column. 
2. By observation of the blurring 

of a boundary. 
3. By the use of a porous dia- 

phragm in contact with a 
stirred liquid. 

different finite layers is determined as the process is brought to 
an end. 

B. Experiments in which the diffusion is followed by continuous or 
intermittent observation, in one or more infinitely thin layers, 
without disturbing the diffusion process. 

Table 2 has been prepared to show some of the kinds of diffusion experi- 
ments which have been used. 

While it will not be possible to include a complete survey of diffusion 
apparatus and methods, a few representative examples will be given to 
illustrate the various types of experiment. Because of the variation of 
diffusion rate with temperature, and the necessity of avoiding a tempera- 
ture gradient in the solution itself, it is apparent that the temperature 
must be accurately controlled during any diffusion experiment. Obvi- 
ously some types of apparatus lend themselves more readily to thermo- 
static control than do others. While no mention will be made of the 
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various means used to maintain the desired temperature, the importance of 
its influence must not be overlooked. 

Of the first group, the so-called second method of Graham (28) marks 
the beginning of the quantitative study of diffusion, since the design of the 
apparatus and the boundary conditions allow a mathematical interpreta- 
tion of the observations. This experiment, as performed by Graham, con- 
sisted of placing 100 cc. of salt solution beneath 700 cc. of water by means 
of a capillary pipet. A cylindrical glass vessel 152 mm. high and 87 mm. 
in cross section was used. After a measured time interval, 50 cc. or one- 
sixteenth of the total solution was removed and the salt content obtained 
by analysis. Graham recorded the salt concentration found in each of 
the sixteen layers. Besides salt, Graham used albumin, gum arabic, 
magnesium sulfate, sugar, and other substances, both in water and in 
ethyl alcohol. 

Later Scheffer (70) modified Graham’s apparatus by using a pipet with 
a stopcock a t  the top to facilitate introduction and withdrawal of solutions. 
In  addition he used one volume of solution under three volumes of water. 
This allowed the use of Stefan’s tables (79). Concentrations were deter- 
mined volumetrically. 

The apparatus of Scheffer was used by Arrhenius (2), who introduced 
a mercury layer on the bottom of the flask to assure a flat surface. He 
added a cork through which he could insert the pipet. This arrangement 
allowed withdrawal of the solution with less mixing than occurred in 
former types. Calculations were based on Stefan’s tables and concentra- 
tions were measured analytically. 

The diffusion vessel was further improved by Oeholm (62), who placed a 
stopcock in the bottom through which mercury could be drawn and liquids 
emptied, and an air vent in the top. The vessel had a greater length to 
diameter ratio than the older types. The concentrations were determined 
volumetrically and Stefan’s tables were used in calculating the results. 
Other experimenters to use this apparatus were Herzog and Polotsky (34), 
who studied the diffusion of dyes, and Jander and Schulz (38), who deter- 
mined the molecular weight of potassium tantalate and other amphoteric 
oxyhydrates. 

A slightly different form of Graham’s apparatus was used by Svedberg 
(82). Solutions were admitted and removed through a pipet with side 
arm. Air pressure was used in the removal of the solutions from the cell. 
Here again the design was such as to  permit the use of Stefan’s tables. 

An early form of diffusion apparatus was that of Fick (18), who made 
diffusion measurements by immersing a series of cylindrical tubes to half 
their length in a saturated salt solution. The upper half was then filled 
with water. The progress of diffusion was measured by means of an 
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hydrometer. Griffin (29) altered this method slightly by placing several 
tubes through a partition which divided the upper and lower halves of a 
box-like container. One medium was placed in one compartment and the 
other in the second compartment. The partition served to separate 
solution and solvent except inside the tubes where diffusion took place. 

In order to avoid the inevitable mixing which occurred at  the beginning 
of the experiment when the solutions of different concentration were 
placed in contact with each other, and again at  the conclusion of the 
experiment when the different layers were segregated, various forms of 
mechanical “slicers” were introduced. 

Schuhmeister (72) originated the inverted cylinder method which was 
later refined by Dummer (16). The diffusion column was built up of two 
cylinders, one inverted over the other. The diffusing solution was placed 
in a lower cylinder. The solvent was contained in a similar cylinder 
which was inverted and placed on a sliding frame. The inverted cylinder 
was then slid over the first one and the diffusion allowed to start. On 
completion of the diffusion experiment the frame was slid back again and 
the contents of the cylinders analyzed. 

A distinct type of diffusion cell was devised by von Wogau (97) for use 
with more viscous solutions. It consisted of eight glass plates with a 2- 
cm. hole in the center of each. These plates fitted into a frame and, when 
the holes were lined up, formed a diffusion column the layers of which 
could be removed at  will. It was used to measure the diffusion of zinc, 
cadmium, lead, tin, and tantalum into mercury. Oeholm (63) adapted 
this apparatus to  the use of the Stefan tables by using four plates. These 
plates were constructed of brass and carefully ground to  insure a perfect 
fit. Any plate could be removed a t  will and the solution in it analyzed. 
This type of apparatus gave more consistent results per layer than the 
older forms and could be used for viscous liquids and colloidal solutions. 
Much of Oeholm’s diffusion data were obtained with this apparatus. 

The diffusion cell described by Cohen and Bruins (12) consisted of six 
glass plates, the first and sixth acting as bottom and top, respect,ively. 
The four middle plates had three 2-cm. holes bored through them. These 
holes were so spaced that three diffusion columns were formed when the 
holes were lined up. The diffusing substance was placed in the second 
plate (from the bottom) and water was placed in the three above it. 
Additional holes in the plate above allowed the cylinders formed to be 
filled completely with water or solution. By rotating the plates the water 
could be slid over the solution. After the diffusion had progressed for the 
desired length of time, the four layers were separated by merely rotating 
the plates. Vibration was minimized by the use of a Julius suspension. 
Concentration was determined by means of an interferometer. 
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Another type of diffusion system to which mechanical slicing may be 
applied is that of diffusion into a gel. In this connection the gel will be 
considered merely as a part of the diffusion apparatus, in so far as its 
presence offers a solution to several experimental difficulties. With the 
diffusion taking place in the gel it is possible to get a sharper boundary 
surface, the danger of mixing is negligible, there is greater freedom from 
convection currents, and effects due to vibration or other outside disturb- 
ances are minimized. The layers may be separated by slicing the gel at 
the desired points a t  the conclusion of the experiment. Adsorption of the 
diffusing molecule by the gel substance and impurities in the gel introduce 
complications into its use. Further, the assumption that the gel exerts 
no influence on the rate of diffusion may be open to question. 

Graham (28) experimented with gelatin in an apparatus similar to the 
one that he had used for solutions. One hundred cubic centimeters of 2 
per cent gelatin containing 10 per cent sodium chloride was allowed to cool 
and set in a cylindrical vessel. This was covered with 700 cc. of 2 per cent 
gelatin and the diffusion allowed to proceed. After several days the gel 
was removed and cut up into sixteen equal layers for analysis. 

Bechhold and Ziegler (4) modSed Graham’s method by allowing 
diffusion to take place from the liquid above into the gel. They gauged 
the concentration by noting the intensity of color of the diffusing sub- 
stance, by the formation of precipitates in the gel, or by analysis. Stiles 
and Adair (81) and Stiles (80) used a similar method, allowing the diffusion 
to proceed from a large quantity of solution upward into narrow glass tubes 
filled with the gel. 

Herzog and Polotsky (34) carried out a large number of experiments on 
the diffusion of dyes in 5 per cent gelatin where the dye served as its own 
indicator. Fricke (21) has developed a micro slicing method to study dif- 
fusion in agar gels. Ricketts and Culbertson (69) suspended a cylinder 
of agar gel in a large volume of stirred solution. After diffusion had taken 
place for a suitable length of time, the gel was removed and sections taken 
for analysis. 

A distinct type of diffusion experiment is that  in which the solutions are 
separated by a porous diaphragm. The diffusion gradient is confined to 
this porous membrane and the pores may be considered as miniature 
diffusion columns. 

The glass diaphragm method used by Northrup and Anson (60) and 
later by McBain and Liu (51) has the advantages of speed and simplicity. 
The apparatus consisted of a sintered glass membrane or alundum disc 
which separated the two solutions. The more concentrated solution was 
placed above, thus as diffusion proceeded gravity tended to keep the 
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solutions at  a uniform concentration. At the conclusion of the experi- 
ment the solution was withdrawn and its concentration determined. 

After an adequate mathematical treatment was formulated, it became 
possible to consider the solution as a series of infinitely close layers. The 
types of apparatus used in this case are designed primarily to fulfill the 
boundary conditions and differ according to  the method used in determin- 
ing the concentration over the system. 

The electrical methods may be readily adapted to  the measurement of 
concentration along a column in systems containing electrolytes in solution. 
Weber (91) arranged a cell in such a way that the potential difference 
between a metal and its ion in the different layers of a diffusing solution 
could be measured, He also measured the conductivity between two 
boundary layers as the material diffused. Procopiu (68) extended Weber’s 
method by introducing a third electrode high in the aqueous layer in order 
to  increase the accuracy of the measurement of concentration difference. 
Haskell (30) measured the conductivity between pairs of electrodes spaced 
at  intervals along his diffusion column. 

Clack (9) based his method on the difference in weight between a 
saturated solution and the same solution after some of the solute had dif- 
fused out. A vessel containing salt solution, immersed in a large volume of 
pure water, was suspended from a balance arm and the loss of weight with 
time was recorded. 

The possibility of a relationship between the refraction of light and the 
concentration of diffusion layers was early shown by Wollaston (98). 
Wild and Simmler (95) derived a mathematical relationship between the 
refractive index and the concentration of the different layers. The first 
experimental apparatus for measuring diffusion and heat conduction by 
means of the refraction of light was devised by Wiener (94). He used a 
solution, covered with water, in a proper optical vessel. Light of definite 
wave length was passed through a slit and lens system and into the solution. 
The interference bands were recorded on a photographic plate as the diffu- 
sion progressed. The distance that the center of the light band was 
deflected by the diffusing solution was measured by means of a cathetom- 
eter. Wiener derived the relationship between concentration and the 
displacement of the light band. Thovert (85) improved Wiener’s experi- 
ment by using a better source of light with collimator, and by changing the 
angle of the slits. Later Thovert (86) arranged his apparatus in the form 
of a spectrometer and measured the deviation by means of an ocular with 
a movable and fixed crosshair. Variations of Wiener’s method have been 
used by Heimbrodt (31), by Clack (lo), and by many others. 

An apparatus for the microscopic measurement of diffusion was intro- 
duced by Westgren (92) for an investigation of gold and selenium sols. 
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His cell consisted of a microscope slide and cover glass. The sol was 
thrown to the bottom of the cell by centrifugal force, the apparatus was 
placed under the ultramicroscope, and the progress of the diffusion was 
measured by counting the number of particles a t  different heights over 
suitable time intervals. Sitte (74) has used a cross-ruled microscope slide 
for noting the movement of particles of a gold hydrosol. 

When two solutions of different concentrations, either molecular or 
colloidal, are placed in contact without mixing, a sharp boundary is present 
between them. As diffusion progresses, however, this boundary becomes 
blurred, and a concentration distribution is obtained which varies with the 
distance from the boundary. 

Svedberg (83, 84) has made very effective use of this boundary blurring 
as a means of measuring the diffusion coefficients of proteins. In addition 
to its use in the ordinary type of experiment he has been able to show that 
the blurring of boundaries in systems subjected to vibrationless centrifugal 
fields was a result of diffusion, enabling him to evaluate the diffusion 
coefficient from its quantitative observation as the centrifuging is con- 
tinued. The registration of the progress of the diffusion was obtained 
photographically. This is possible because protein materials fluoresce 
under the influence of ultra-violet light. The relationship between inten- 
sity of fluorescence and concentration of the protein must have been ob- 
tained previously by independent experiments in order that the variation 
of concentration with height in the diffusing column may be made avail- 
able. L a m  (46) has applied the refractive index method to the study of 
the blurring of the boundary in the ultracentrifuge. 

A microscopic arrangement to measure the diffusion of dyes, using the 
blurring of the boundary method, was designed by Furth (25). The 
diffusion apparatus consisted of a divided cell, the diffusion taking place in 
the left side. A colorimetric standard was located in the right side. As 
the diffusion proceeded the microscope was successively focused on the 
layer whose concentration was comparable to that of the standard solution. 
The rate of diffusion was determined from the observation of the position 
of this layer as a function of time. A sharp boundary was obtained by 
means of a metal partition between the two layers which was removed by 
means of an electromagnet at the start of the diffusion. 

The measurement of diffusion between a stirred liquid and a solution 
contained in a porous solid offers the experimental advantages of being 
little affected by vibration or convection currents and of giving a sharp 
boundary between the two solutions. 

Friedman and Kraemer (23) have utilized this method in their investi- 
gation of gel structure. In a typical experiment a firm gel was formed in 
the bottom of a 500-cc. bottle and an equal depth of liquid introduced over 
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the gel. Either the liquid or the gel contained the diffusing substance 
a t  the start of the experiment. The liquid was kept a t  a uniform concen- 
tration by constant stirring. Its concentration was determined a t  suitable 
intervals by means of an immersion refractometer. This method of meas- 
uring diffusion is also being used by the authors in the investigation of the 
capillary dimensions of porous solids. The diffusion cell consists of a 
water-tight brass cylinder provided with a stirrer. After the pores of the 
solid have been filled with solvent or solut~on the solid is fitted into the 
cell in such a way that only the top surface is exposed, An equal depth 
of either solution or solvent is placed over the solid and maintained at  a 
uniform concentration by stirring. 

111. INTERPRETATION 
The ability of a substance to diffuse is frequently mentioned and made 

use of in connection with other and perhaps better known phenomena. 
Nevertheless, the diffusion of substances in solution is one of the most fun- 
damental of properties, since it is so closely related to molecular motion. 
The specific diffusion rate or diffusion constant obtained from its study is 
a valuable constant, since from it much useful information may be obtained. 
It has found repeated application in both scientific and technical problems. 
Among the former may be mentioned the determination of molecular and 
particle size, the development of electrolytic solution theory, the relation 
between diffusion rate and the velocity of heterogeneous reactions, and 
the description of the coagulation of colloidal systems in terms of a time 
constant whose magnitude depends upon the ability of the particles to 
diffuse. 

Reasons have been suggested why diffusion studies have not been made 
to an extent which seems to be commensurate with their importance. 
The experimental difficulties involved and the fact that  under different 
conditions inconsistent values result for the diffusion coefficient are un- 
doubtedly the most important of them. Failure of Fick’s law and a vari- 
ation of the coefficient with concentration are frequently mentioned in 
connection with the second difficulty, and it is indeed unfortunate that 
these anomalies persist into such low concentrations that only measure- 
ments of highest precision permit the estimation of the proper corrections 
by extrapolation to  zero concentration. But in spite of this situation, 
means are being found to conduct and interpret the experiments in a man- 
ner which leads to a consistent result and the information obtained bids 
fair to repay the extra effort involved. 

A. DIFFUSION AND MOLECULAR RADIUS 

As we have seen in an earlier section, kinetic theory leads to the expres- 
sion 
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where f is the reciprocal of the mobility and therefore the frictional coeffi- 
cient. For a sphere obeying Stokes’ law, it is equal to 6ar]r. Many 
attempts have been made at a direct experimental confirmation of this 
law, so that it may be used for the study of the size of molecules. It is a 
method which should be of considerable value for spherical or nearly 
spherical molecules, provided the validity of the equation can be estab- 
lished; but unfortunately a rigorous proof of it in such cases does not seem 
possible. Several methods of test have been recorded in a number of 
places, and a great deal of experimental work has been done to try to 
establish it. The more important types of experiment have sought to 
prove one of the following relationships. 

1. In the same solvent and a t  the same temperature with a number of 
diffusing substances there should result 

D . r  = const. 

2. At constant temperature a given substance diffusing in a variety of 
solvents should give 

D - I I  = const. 

3. At constant viscosity a substance diffusing at  several temperatures 
should obey the relation 

- const,. D 
T 
_ _  

provided the radius of the molecule can be assumed independent of 
temperature. 

Experiments made to test these relationships have usually been as suc- 
cessful as one could reasonably expect. In the very careful experiments 
of Cohen and Bruins (13) the velocity of diffusion of tetrabromoethane into 
tetrachloroethane a t  temperatures ranging from 0°C. to 50°C. was deter- 
mined, making corrections for the change in the viscosity of the solvent 
as the temperature was increased. The results of the work are summarized 
in table 3. 

Cohen and Bruins interpret their data to indicate small deviations in 
the Stokes-Einstein law, but we should prefer to consider these results as 
a demonstration of the fundamental correctness of the third relationship, 
considering that the diffusing molecules. are not spherical, and that the dis- 
continuities of the medium are not particularly small compared with 
their size. 
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r ~ 1 0 8 c m  .................... 

To mention a single other example Scheffer and Scheffer (71) studied the 
temperature dependence of the diffusion constant of mannite in dilute 
aqueous solutions from 0°C. to 7OOC. and found good agreement with the 
Stokes-Einstein formula. Correcting for the change in viscosity caused 
by the increase in temperature, the relation DIT = const. is quite exactly 
obeyed. The radius of the mannite molecule was calculated to be r = 
4 X 10-8cm. 

The proof of the relation D.r  = const. involves the study of the diffusion 
of a number of different molecules of known dimension in the same solvent 
and at the same temperature. Among others, Thovert (85, 86, 87) and 
Oeholm (62, 64, 65) have made studies of just this kind, the former using 
water and methyl alcohol, and the latter water and ethyl alcohol, as sol- 
vents. The variety of solutes used is suggested by the list of materials 
which were allowed to diffuse into water by Oeholm, as follows: glycerol, 
pentaerythritol, mannite, alloxan, resorcinol, hydroquinone, saligenin, 
inulin, acetamide, carbamide, dicyandiamide, caffeine, ecgonine, salicin, 

273.1"C. 283.1"C. 288.1"C. 298.1"C. 3O8.l0C. 323.1"C. 

0.0266 0.0215 0.0195 0.0164 0.0140 0.0113 
2.15 12 .15  12 .16  12.17 12 .19  12.21 

~ ~ _ _ _ _ _ _ _ _ _ _ _ _ _  

TABLE 3 
Dif fus ion  data for  tetrabromoethane in tetrachloroethane 

I TEMPERATURE 

gum arabic, and starch. It is a t  once apparent that they could not have 
expected to verify the relationship in question with their experiments 
because sufficient data concerning the dimensions and shape of these 
molecules were not available to them. Rather it was their purpose to 
study the validity of another equation which might appear to have similar 
significance, namely, 

Dl / i i?  = const. (39) 
where M is the molecular weight of the solute. This relationship may be 
obeyed by limited numbers of similar molecules, but consideration of the 
factors involved makes it a t  once evident that it cannot have general 
validity. The reason is just the thing we believe but are still attempting 
to prove, namely, that the diffusion rate of a molecule is determined by its 
(effective) radius. 

It is the opinion of the writers that the numerous attempts to prove the 
second equation, Dq = const., have not been as successful as they might 
have been had the several investigators taken care to  choose their systems 
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so that the discontinuities of the medium were small compared with the size 
of the diffusing solute. The viscosity needed in this equation should be a 
“microscopic” viscosity and should measure the frictional resistance of 
the solvent molecules to the linear displacement of the diffusing molecules. 
Further, there is sometimes considerable doubt as to whether the viscosity 
as measured in a viscometer and determined by the rate a t  which the 
molecules of the medium slip past each other is actually the viscosity that 
one should use for the required resistance to the displacement of solute 
molecules. Perhaps the most satisfactory source of information for the 
present status of the equation involving the coefficient of viscosity is the 
comparatively recent article of Dummer (16). The results of experiments 
with acetone, nitromethane, nitrobenzene, ethyl acetate, and ethyl ben- 
zoate molecules diffusing into a number of common organic solvents are 
recorded there. 

Remarkable as it may seem, the agreement between theory and fact is 
often closer and more satisfactory for colloidal systems than it is for 
ordinary molecular solutions. Measurements on Faraday gold sols having 
particles of known radius have been carried out by Svedberg (82) in 
order to test the kinetic formula; he found the particle size calculated by 
the Stokes-Einstein equation from the diffusion constant to  agree within 
the limit of experimental error with the known radius which had been 
determined ultramicroscopically, using the Zsigmondy nuclear method. 
In  a representative experiment diffusion gave r = 1.29 X cm., and 
the ultramicroscopic result was T = 1.33 X lo-’ cm. Westgren (93), 
working in Svedberg’s laboratory, carried out a number of similar diffusion 
measurements with gold and selenium sols, using a method in which a very 
thin layer of the diffusing solution was placed under a high column of dis- 
persion medium. After a definite period of time the concentrations c1 

and cz were determined a t  the heights X1 and XZ. It follows from equation 
14 that the concentration ratio may be written, 

thus the diffusion constant can be determined with comparative ease. 
The concentrations were determined by counting the number of particles 
at different heights with the ultramicroscope. The values of the radii 
calculated with the Stokes-Einstein equation agreed very well with the 
radii determined by other methods. 

The consensus of opinion appears to be that the kinetic theory equation 
can be applied to the determination of molecular sizes if the limitations 
imposed upon its use are properly recognized. This is a conclusion of 
great importance because i t  makes possible the calculation of the equiva- 
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lent radii of dissolved particles varying in size from quite small molecules 
to particles of ultramicroscopic dimension. Such work has been done by 
Herzog and his collaborators (32, 34), who have studied the diffusion 
behavior of and calculated the particle size for cellulose esters, rubber, 
proteins, ferments, and dyes in their proper solvents. More recently 
Furth and his associates (25) have developed and used a rapid micro 
method which permits an estimation of the particle size of dyestuffs in 
solution. 

Svedberg (84) makes very ingenious use of diffusion coefficient deter- 
minations in connection with his sedimentation velocity method for the 
determination of molecular radius and weight. By combining the results 
of the two studies, made simultaneously in the ultracentrifuge, and by 
assuming that the frictional resistance exerted by the solvent in diffusion 
is equal to the frictional resistance, which determines the sedimentation 
velocity, the equations describing each phenomenon can be combined to 
eliminate the friction term, giving, 

where M is the molecule weight of the solute, 

boundary at  times tl and t2, 
x1 and 22 are distances between the axis of revolution and the 

w is the angular velocity of the rotor of the centrifuge, 
V is the partial specific volume of the particle, 
p is the density of the solvent, and 
D is the diffusion coeficient. 

The diffusion constant, which must be determined separately, is obtained 
from the blurring of the boundary as it recedes. The purpose of this 
method of procedure is to eliminate the use of Stokes’ law to evaluate the 
frictional resistance to the motion of the particles, involving as it does 
certain undesirable conditions for validity. 

In an extremely interesting table which is here reproduced (table 4), 
Svedberg (84) has compared values of molecular radii for a number of pro- 
teins calculated from sedimentation velocity studies with those determined 
using diffusion measurements. In certain cases the values of the radius 
obtained by the two methods are in excellent agreement, indicating a 
spherical shape for their molecules, but in others there is considerable 
difference, a result of the failure of the Stokes-Einstein law when it is 
applied to nonspherical molecules. 

In the attempt to accelerate and simplify diffusion methods as applied 
to  biological materials, Northrup and Anson (60) have resorted to the use 
of a thin porous plate to make the concentration gradient high and a t  the 
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Egg albumin.. . . . . . . . . . . .  
Hemoglobin.. . . . . . . . . . . . .  
Serum albumin.. . . . . . . . . .  
Serum globulin.. . . . . . . . . .  
Phycocyan . . . . . . . . . . . . . . .  
Phycoerythrin.. . . . . . . . . .  
Limulus-hemocyanin.. . . .  
Helix-hemocyanin.. . . . . . .  

same time to avoid convection currents. Thus the pores of the diaphragm 
must be small enough to prevent convection and a t  the same time large 
enough to allow free diffusion. The apparatus, after calibration with a .  
hydrochloric acid solution, was used to study the diffusion rate of hemo- 
globin. Using the Stokes-Einstein law it was found to  have a molecular 
weight of 68,500 f 1000, which agrees “within the experimental error 
with that of 67,000 found by Adair by osmotic pressure measurements and 
of 68,000 found by Svedberg from experiments on the rate of sedimenta- 
tion.” In  using the Stokes-Einstein equation, it was assumed that the 
hemoglobin molecules are spherical and impelled by a force given by an 
idealized osmotic pressure law against a resistance as given by Stokes’ 
law. But Svedberg has shown in quite convincing manner (table 4) that 
hemoglobin molecules cannot be spherical. Using Einstein’s law, Sved- 

TABLE 4 
Molecular radius  data f o r  protein molecules 

cm. per second 
3.32 X 10-13 
4.37 X 10-13 
4.21 x 10-13 
5.57 X 10-13 
5.59 X 10-13 

11.30 X 10-13 

35.50 X 10-13 
98.00 X 10-13 

SPECIFIC SEDIMEN- 

AT 2oncc. 
MOLECULE TATION VELOCITY 

DIFFUSION 
CONSTANT AT 

20”. 

cm.2 per  second 
9.58 x 10-7 
6.36 x 10-7 
6.10 x 10-7 
5.40 x 10-7 
5.28 x 10-7 
5.22 x 10-7 
1.87 x 10-7 
1.78 x 10-7 

r (SEDI- 
MENTATION 
VELOCITY) 

2.18 
2.44 
2.39 
2.75 
2.76 
3.93 
6.96 

12.00 

r 
(STOKES- 

EINSTEIN) 

2.23 
3.35 
3.49 
3.96 
4.04 
4.09 

11.40 
12.20 

berg calculated the radius of the hemoglobin molecule to be 3.35 X lo-’ 
cm., while Northrup and Anson gave 2.73 X lo-’ cm. for the same 
constant. It is true that  Svedberg’s experiments were made a t  20°C., or 
15°C. higher than those of Northrup and Anson, but it is difEcult to  see 
how this difference in radius could be accounted for on this basis alone.2 
One must therefore feel that results obtained in this way for a diffusion 
constant or radius can only be accepted as provisior,al until independent 
confirmation of the method can be obtained. It is true that McBain and 
Liu (51) have given a simple and rapid procedure for the use of the Nor- 
thrup diffusion cell, in which it was shown that the results are independent 
of the nature and porosity of the diaphragm and equivalent to the best 
obtained by the more laborious classical methods. 

Note added in proof: Tiselius and Gross (Kolloid-Z. 66, 11 (1934)) have shown 
that the diffusion constant varies with the concentration of solute. Their data 
make possible an explanation of this difference. 

CHEMICAL REVIIDWVLI, VOL. 14, NO. 2 
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B. DIFFUSION AND ELECTROLYTIC SOLUTION THEORY 

It has been seen in an earlier section of this report that an independent 
diffusion of ions is impossible because of the electrostatic foices between 
them; thus the problem is more complex than the one involving neutral 
molecules alone. However, Nernst (57) was able to show that the amount 
of salt diffusing in a given time could be expressed in terms of the mobilities 
of the ions, the cross-sectional area of the diffusing medium and the con- 
centration gradient, when 100 per cent dissociation can be assumed. 
Important experimental studies of the diffusion coefficients of salt solu- 
tions have been carried out by Haskell (30), Oeholm (62, 64), Clack (lo), 
McBain (50, 51), Sitte (75), and others. In  the verification of the inter- 
ionic attraction theory of diffusion due to Onsager and Fuoss (66), it is 
preferable to utilize differential coefficients of diffusion rather than those 
obtained by allowing a given solution to diffuse into pure solvent, but 
comparatively few data of this type are available. Those of Clack which 
meet this particular requirement were made in a concentration region 
from 0.05 N to saturation, so they hardly permit a test of the theory in 
the region where the interionic effects predominate. The Onsager theory 
does account for the general type of the relation between the diffusion 
constant and concentration, but there are difficulties which must still be 
overcome. 
detail, therefore further reference to i t  here is unnecessry. We may ven- 
ture to predict that when precision measurements designed for the express 
purposes of the theory have been made, the situation will have been 
considerably improved. 

Haskell has studied the interesting and practically important case of a 
dissociating solute which diffuses in the two parts,-the dissociated and the 
undissociated. He could show in the first place that the diffusion constant 
generally becomes larger as the dilution is increased, which is interpreted 
to  mean that the ions move more rapidly than the undissociated portion. 
The problem Haskell set for himself was to see if during an infinitesimal 
time these parts could not be considered as moving independently, each 
having its own diffusibility, so that the total amount of material dm cross- 
ing a given area is 

dm = dml -I- dmz 

where dml represents an amount of unionized salt, and dmz represents an 
amount of ions. The complex differential equation necessary to describe 
the problem could not be solved directly so that the approximate methods 
of procedure suggested in Part I were resorted to. Experiments with 
thallium sulfate and barium nitrate in tenth-normal solution led to the 
conclusion that the rate of diffusion of the undissociated molecules is of 
the magnitude one-half that of the ions. 

Onsager and Fuoss have discussed this situation in great , 
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In  order to test the Nernst formula, Oeholm investigated the diffusion of 
a number of strong electrolytes of valence type 1-1 in water solution at 
concentration 0.01 N and found substantial agreement. A portion of the 
data are collected to form table 5. 

The relation between the mobility of the ions under the influence of an 
electrical field and their ordinary diffusion is therefore justified. The 
Nernst expression has been generalized by Noyes, who has applied it to 
the case in which a salt is completely dissociated into any number of ions. 
This extension is given in detail in the article by Haskell. 

TABLE 5 

Dif fus ion  of s imple electrolytes in dilute aqueous solution at 18°C. 

ELECTROLYTE 
0.01 N IN WATER 

. . . . . . . . . . . . . . . . . . .  
LiC1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

HCl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
NaOH. . . . . . . . . . . . . . . . .  
KOH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

D (OBSERVED) 
OEHOLLI 

1.170 
1.460 
1,000 
1.460 
2.324 
1,432 
1.903 

D (CALCULATED) 
N E R N B T  

1.173 
1.460 
0.994 
1.467 
2.431 
1,558 
2.109 

C. DIFFUSION AND HETEROGENEOUS REACTION KINETICS 

The dissolution of a substance, whether it be a salt dissolving in water, a 
metal dissolving in an acid, a resin dissolving in acetone, etc., naturally 
has been the subject of much study. The classical theory for the rate of 
solution of solids due to Noyes and Whitney (61) and to Nernst (58) has 
postulated that the rate of this process is very high compared to the rate 
a t  which the active component of the solution can reach the solid surface 
by diffusion, hence the solution rate should be dependent upon that of the 
diffusion to the surface through the products as they are formed and 
diffusing away from the surfaces being attacked. However, van Name 
and Hill (89) and others have recognized that this theory can not be as 
generally applicable to heterogeneous reactions as had previously been 
supposed. There are now generally assumed to  be three types of hetero- 
geneous reaction, provided that we exclude certain other complicating 
factors which would certainly interfere, as follows: 

1. Those in which the surface reaction is very much faster than the 
diffusion rate, the observed reaction rate being determined by the latter. 

2. Those in which the reaction is very slow compared to the diffusion 
rate, the latter then being without influence in determining the rate of the 
process. 
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3. Those in which the diffusion rate and reaction rate are comparable in 
magnitude, so that both factors will influence the observed reaction rate. 

Interest in this problem has been revived because of the work and dis- 
cussions of Bronsted and Kane (7), Kilpatrick and Rushton (41), and King 
and Braverman (42) on the rate of solution of metals in acids. It will be 
recalled that Nernst (59) had postulated the existence of a “diffusion 
layer” surrounding the solid, the thickness of which could be calculated 
from the expression, 

where k is the observed solution rate, D is the diffusion coefficient, and 
6 is the thickness of the layer. Thus, if the thickness of the adhering layer 
for a given kind and velocity of stirring can once be determined by experi- 
ment, the velocity constant of the reaction can be calculated. This con- 
stant could be obtained by Brunner (8) from measurements on the rate of 
solution of magnesia in benzoic acid, after which it was possible to  calculate 
the rate of solution of magnesia in a number of different acids. A further 
conclusion seems to  follow at  once: i t  is not the strength of the acid which 
regulates the rate of attack, but rather the diffusion coefficient, Further 
results of experimental work in general agreement with this conclusion 
have been published by van Name and his associates (88), and by Hey- 
mann (36). They all dealt with typical cases in which no other slow proc- 
esses were involved, so that reasonably good agreement must have been 
expected. 

But while the process of solution of metallic oxides, hydroxides, and 
carbonates in acids may be so rapid that the observed rate of solution may 
be controlled by the diffusion process, it could well be that the chemical 
reaction involved in the dissolution of metals in acids will be slower than 
the accompanying diffusion. Bronsted and Kilpatrick have therefore 
begun such experimental studies to  determine whether, as heretofore sup- 
posed, only the hydrogen ion reacts directly with the metal, or whether 
other acid ions and molecules enter into such reactions as well. To quote 
Bronsted and Kane, “There is no reason, however, to assume that the 
reaction of dissolved molecules with the molecules of a solid substance 
should be,instantaneous or in any way more rapid than the reactions of 
dissolved molecules between themselves. The diffusion theory is therefore 
inapplicable for a general explanation of heterogeneous reactions. On the 
other hand, when the elementary reaction proceeds with sufficient rapidity, 
there is no doubt that the diffusion of the reacting acid to the interface 
plays a part more or less important for the dissolving process.” 

The work of Bronsted and Kilpatrick attempts to  deal with the subject 
from the standpoint of the extended theory of acids and bases, now well 
known as the result of work by Bronsted and by Lowry. Kilpatrick and 
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Rushton have observed the rate of dissolution of magnesium in various 
acids and buffer solutions with results which have to be interpreted to mean 
that the chemical process is much slower than the diffusion process. In a 
more complete work Bronsted and Kane have applied this theory to the 
rate of solution of sodium from sodium amalgam by acids, in which it is 
concluded that while the diffusion process determines the rate with the 
stronger acids, the chemical reaction rates are sufficiently lower than the 
diffusion rates in the case of acids of dissociation constant less than 
to be responsible for the observed velocities. King and Braverman, on 
the other hand, are not convinced of the sufficiency of the arguments 
which have led to these conclusions. They point out five criteria which 
are generally accepted for the validity of the “diffusion rate” theory, and 
insist that  neither Kilpatrick and Rushton nor Bronsted and Kane have 
tested their detailed application. Their own studies on the rate of solution 
of zinc in acids lead to certain results which are definitely contradictory to 
the Bronsted-Kilpatrick explanation; a t  the same time they recognize that 
the older diffusion rate theory cannot be applied to their data without 
some modification. Further investigation of these problems will un- 
doubtedly be forthcoming. 

The theory of the rate of gaseous reactions a t  the surface of catalysts 
has been subjected to similar transitions. A number of individual reac- 
tions can not be discussed in the space available to us, but it will be of 
interest to suggest the changes in viewpoint as to mechanism which one 
reaction chosen as typical of them has undergone. The reaction chosen 
is that of the contact sulfuric acid process, 

In the attempt to explain the observed rates of this reaction under different 
experimental conditions, Bodenstein and Fink ( 5 )  made use of a modifica- 
tion of the Nernst theory of heterogeneous reactions described above. In 
other words, they assumed that these rates were determined by the rate a t  
which the reacting gases diffused through a film of gas adsorbed on the 
surface of the catalyst. The mathematical formulation was complicated by 
the retardation of the reaction by the sulfur trioxide formed in the reaction; 
nevertheless two expressions could be set up depending upon whether the 
oxygen or sulfur dioxide was present in excess. 

(1) SO, in excess: 

(2) O2 in excess: 
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Thus, the reaction velocities depend upon the diffusion of oxygen if sulfur 
dioxide is present in excess and upon the diffusion of sulfur dioxide if 
oxygen is present in excess, again provided the rate of reaction a t  the 

surface is rapid with respect to the diffusion. The term - is empirical 

in nature. 
There are several serious objections to this explanation. As Langmuir 

(48) has pointed out, to account for the slowness of this and similar reac- 
tions it would be necessary to assume the existence of retarding layers of 
such thickness that they would be visible. Furthermore, the high tempera- 
ture coefficient of surface reactions is inconsistent with the much slower 
variation of a diffusion rate with temperature. Because of these and other 
difficulties Langmuir was led to seek another explanation, and in a remark- 
able paper published more than ten years ago he was able to develop an 
entirely new theory for the kinetics of such reactions, based upon his 
interpretation of evaporation from and condensation on solid surfaces. 
According to it the rates of evaporation and condensation are determined 
by the nature of the forces operative between the solid and gas and the 
number of active spots available on the surface. The forces involved, 
which are of chemical nature, are limited in range to distances of the order 
of molecular thicknesses. The adsorption on the surface is the result of a 
time lag between condensation and evaporation. Two general cases are 
considered. 

1. Surface of catalyst only slightly covered by monomolecular layer. 
2. Surface of catalyst practically completely covered by reacting 

The interesting thing for our purpose is that deductions based upon the 
“monomolecular layer” theory lead to reaction rate equations which are 
identical in form with those found by Bodenstein and Fink, and for which a 
diffusion mechanism was postulated. Once more, then, we are faced with 
the necessity of a differentiation between monomolecular and polymolecu- 
lar theory. The presumption is decidedly in favor of the monomolecular 
theory a t  the present time. 

[S031+ 

gases. 

D. DIFFUSION AND KINETICS OF COAGULATION 

In the field of homogeneous reaction kinetics the bimolecular reaction has 
been successfully described by a collision mechanism based upon kinetic 
theory. The expression for the specific reaction rate of such a reaction is, 

E 

k = 8e-Z  (44) 
E 

where s is the number of molecules colliding, and e-= is a numeric repre- 
senting the fraction of the molecules having energy equal to or greater than 
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the activation energy E. In  short, the reaction occurs when activated 
molecules collide. A similar problem presents itself when we come to 
study the problem of the coagulation of a colloidal system, which, with 
respect to  the rate of change of the total number of particles, is equivalent 
to a polymerization reaction of the second order. The solution of this 
problem was shown by Smoluchowski (77) to  be comparatively simple in 
the case of a rapid coagulation, but it is more complex for slow coagulation. 

In  considering the coagulation process, two factors must be carefully 
differentiated. In  any colloidal system there is always a definite prob- 
ability of collision between particles, and there is further a definite prob- 
ability of adhesion, once collision has taken place. By rapid coagulation 
is meant that process taking place when the probability of adhesion 
approaches unity, or when all collisions are effective in reducing the total 
number of particles. When the probability of adhesion is less than unity, 
the coagulation is characterized by the word “slow.” The quantitative 
relations for rapid coagulation in a dispersion of spherically shaped particles 
of uniform size are based upon the assumpt,ion that two particles adhere 
whenever they diffuse to  within a certain distance E,  which is slightly 
more than twice the radius of a single particle. These relationships provide 
an answer to several questions, as follows: 

1. The change in the total number of particles, 

(45) 
NO N = -  

t l + F  

2. The change in the number of single particles, 

3. The change in the number of double particles, 

No (;) 
N z  = (1+$ 

(47) 

4. The change in the number of particles of border, 

In these equations, N ,  N l ,  Nz ,  Nk are the numbers of all, single, double, and 
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kth-order particles, respectively, a t  time t ;  k is the number of primary par- 
ticles in the aggregate; No is the number of particles a t  the start of the 
experiment; and T i s  a constant characterizing the rate of coagulation. 

The constant T is of special interest because i t  is theoretically equal to  

with D the diffusion coefficient. The constant D is involved 
1 

4rNoDR’ 
because it determines the frequency with which collisions between particles 
can occur. The probability that one particle considered as stationary in 
a sol containing N o  particles per cubic centimeter will be struck by another is 

P = 4nDR 

Thus, starting with N O  particles, the number remaining after time t will be 

N = N O e - - 4 r D R N o t  (49) 

The derivation of the several equations given above follows directly from 
this statement. The similarity with the expression which describes the 
bimolecular reaction is now made apparent. 

In  actual practise the constant T is determined empirically by noting 
the time a t  which the total number of particles has fallen to  one-half of its 
original value. In  this manner the theory has been confirmed by direct 
ultramicroscopic count when the coagulation process could be described as 
a rapid one. 

For slow coagulations the application of the theory after its modihation 
to allow for a definite fractional number of effective collisions has not been 
so successful. In  some laboratories this failure of the theory is believed to 
be due to a sensitivity of slow coagulation to  variations in particle size 
and to  deviations from spherical shape, The situation has been consider- 
ably improved by the excellent theoretical work of Muller (53), in which 
these factors are given due consideration. In  spite of its shortcomings the 
coagulation theory is to be considered another triumph of the molecular 
kinetic point of view as applied to colloidal systems, and improvements in 
the present situation may be expected. 

IV. APPLICATIONS 
Diffusion theory has been shown to be of considerabje significance for 

certain fundamental questions of the purely physical sciences. In addi- 
tion, the application of diffusion measurements to scientific and engineering 
problems has been attended with success in a number of instances, so 
much so that it seems worth while to suggest some of them before con- 
cluding this report. 

An excellent example of an engineering application is found in the 
wetting and drying of porous solids of all kinds. The wetting of an insulst- 



MOLECULAR DIFFUSION I N  SOLUTION 211 

ing material by absorption of moisture which exerts a profound effect upon 
its electrical characteristics, has been described by means of the diffusion 
law in many instances. Thus, Andrews and Johnston (1) have shown that 
the process of water absorption when a sheet of rubber is immersed in water 
follows the diffusion law. As was pointed out by these investigators, it is 
a further consequence of this law that for a given sample of rubber thetime 
required to reach a specified degree of saturation is proportional to the 
square of the thickness of the sheet, an important result because it enables 
the prediction of the behavior of thicker sheets from observations made 
upon thin sheets which become saturated in comparatively short times. 

The inverse problem, that of the drying of a solid, has also been the 
subject of much discussion. As Sherwood3 (73) has pointed out in an 
interesting series of articles dealing with this problem, the water contained 
in the solid must by some mechanism travel to the surface before it can 
escape. It has been generally assumed that it travels through the solid by 
diffusion as a liquid, although the possibility of its diffusing as water vapor 
has also been considered. In any quantitative consideration of the prob- 
lem there must be described the mode of transport of the water through 
the solid, the place and rate of the evaporation, the distribution of mois- 
ture in the solid, and the temperature. In the process discussed by 
Sherwood it is assumed that the temperature, humidity, velocity, and 
direction of the air are maintained constant, and that the latent heat of 
vaporization of the water is received by the solid by convection. 

The general mechanisms of drying can be classified as follows: 
1. Evaporation of the liquid at  the surface of the solid, with resistance 

to  internal diffusion of liquid small as compared with resistance to the 
removal of vapor from the surface. 

2. Evaporation a t  surface, but with resistance to internal liquid diffusion 
great as compared to the removal of vapor from the surface. 

3. Evaporation in the interior of the solid, with resistance to internal 
diffusion great as compared with resistance to the removal of vapor. 

Observations on the rate of drying of a porous slab as a function of the 
water content led Sherwood to divide the process into a constant rate 
period and a falling rate period. During the constant rate period the 
evaporation takes place a t  the surface of the wet solid much as it does from 
the surface of a liquid, with the rate of drying being limited by the diffusion 
rate of water vapor through the surface air film outward. The falling 
rate period is shown to be further divisible into two zones, a first one in 
which the rate of drying decreases because of a reduction in the area of 

a Many other investigators have considered these and similar problems, and 
although there has sometimes been uncertainty with regard to  detail they are essen 
tially in agreement with the views to  be described here. 
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wetted surface, and a second one in which the drying is controlled by 
internal liquid diffusion, of which either mechanism or each in turn may 
prevail. It is also true that the less porous materials show no constant 
rate period at  all, the process being controlled entirely by internal liquid 
diffusion. 

The movement of liquids through solids obeys the same fundamental 
diffusion laws as hold in the case of molecular diffusion in liquid systems, 
and equations of the form considered in the theoretical section may be 
applied to the process. Among other things it can readily be shown that 
the time required to dry to a given water content is proportional to the 
square of the block thickness, the diffusion taking place in the direction in 
which the thickness is measured. A fuither point of interest has to do 
with the plane from which the evaporation takes place in the second zone 
of the falling rate period. This plane of evaporation may move inward 
from the surface or it may remain effectively at  the surface, depending 
upon whether the solid is porous or fibrous as in the case of paper pulp, or 
whether it is amorphous as in rubber or clay. In this way diffusion studies 
can give definite information concerning the structure of solids. 

In a somewhat different way this statement also may be illustrated by 
the work of Friedman and those associated with him (22,23,43), who have 
studied the porosity of dilute gels using diffusion measurements. The 
problem turns on the very slight hindrance that these gels offer to small 
molecules diffusing through them. Thus the viscosity theoretically 
related to the diffusion constant is but slightly greater than that of the 
liquid itself, and the diffusion must take place in the liquid contained in the 
pores of the gelatin, agar, and cellulose acetate gels which have been 
investigated. 

The decreased diffusion constant is assumed to have resulted from the 
operation of three factors: 

1. A reduction of diffusion space by the volume of the gel structure. 
2. An increased resistance to motion due to the proximity of the cell 

3. An increased viscosity of the free liquid due to solution of some of 

These factors were taken into account using a relationship of the fol- 
lowing form: 

walls. 

the gel substance. 

where Dw is the diffusion constant of the solute in pure water, 
De is that observed in the gel, 
T is the radius of the diffusing molecule, 
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DIFFUSING SUBSTANCE 

- - 
Urea.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Sucrose ..................................... 
Glycerol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

R 
ir 
CY 

is the average pore radius in the gel, 
is the correction factor for the mechanical blocking, and 
is the correction factor for the viscosity. 

The correction factor CY can be calculated from the difference between 
DLv and the diffusion constant obtained by extrapolation to zero concen- 
tration of the data for the dilute gels. The correction for mechanical 
blocking, which incidentally will depend upon whether a semicrystalline 
(fibrous) or amorphous structure is involved, was obtained from a formula 
given by Dumanski (15) some years ago. The third factor is estimated 
from Ladenburg’s correction (45) for the fall of bodies in a capillary tube. 
The results of the work with gelatin gels are summarized in table 6. The 
agreement between pore size values obtained with djff erent diffusing mole- 
cules will be observed to be satisfactory; furthermore the values themselves 
are of the expected magnitude. 

The authors of this article have been engaged for some time in similar 

EFFECTIVE P O R E  DIAMETER 

5 per cent 10 per cent 15 per cent 
gelatin gelatin gelatin - 
m p  mp m p  
9 . 4  3 . 0  1 . 6  

11.4 3 . 4  2 . 0  
11.0 2 . 8  1.0 

TABLE 6 
Effective pore size in gelat in  gels  by di f fus ion  method 

experiments in which lactose and glycerol have been allowed to diffuse 
both in and out of soaked blocks of wood arranged in the several directions. 
The samples used up to the present time have been both the sapwood and 
heartwood of cedar, western hemlock, and white pine. The effective 
pore size calculations involve several difficult assumptions; nevertheless, 
preliminary results are in reasonably good agreement with those of 8tamm 
(78), obtained by other and ingenious methods. 

A problem less closely related to our discussions, but one which is of 
considerable significance, has to do with the diffusion and electrolytic con- 
duction in crystalline solids, the most recent and satisfactory treatments of 
which have been given by Hevesy (35) and by Jost (39). If it is assumed 
with Frenkel (20) that  in such systems diffusion and electrolytic conduction 
are the result of migration of the ions in the interlattice space, and of migra- 
tion of the vacant places themselves, it is possible to account not only for 
the temperature dependence, but also for the magnitude of these effects 
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which are known from numerous experiments. 
and mobility of ions have been represented by a term of the form 

In the literature, diffusion 

in which the constant a depends upon the mobility of a single ion, the 
ionic concentration, and, in the case of conductivity, the ionic charge, 
while the constant b determines an energy of liberation required by the ion 
to leave its normal position. 

The applications to physiology and biology are numerous, but neces- 
sarily qualitative or semiquantitative in character. Indeed, the com- 
plexity of the systems involved is often such that there is difficulty in 
identifying and segregating the phenomena actually involved. But in 
spite of this fact much has been accomplished. It was a t  one time believed 
that the sorption of materials in biological systems took place as a result 
of diffusion alone, but the insufficiency of this point of view is recognized, 
now that negative osmose, selective adsorption, variations in cell structure 
and composition, and other factors are better understood. Certainly it 
seems to be true that there is a parallelism between rate of diffusion and the 

diffusion, osmotic pressure, swelling, and shrinking as factors involved in 
the entry of food into cells and in the circulation of matter. Diffusion is 
involved in the processes of secretion and excretion, but certainly not in a 
simple way. 

Diffusion studies with enzymes have been made with two objects in view, 
one in the attempt to obtain a theory for the velocity of enzyme catalysis 
and the other to separate the enzyme from other crystalloids and colloids. 
Herzog and Kasarnowski (33) have determined the diffusion coefficients of 
several enzyme preparations. Frankel and Hamburg (19) and others have 
shown that enzyme preparations consist of a diffusible and nondiffusible 
part; thus enzymatic cleavage may form products which pass into the 
circulating fluids of an organism by diffusion through membranes. Experi- 
ments by Nelson and associates (55, 56), in which the temperature coeffi- 
cients of enzyme reactions were studied, have led them to conclude that 
chemical reaction and not diffusion determines the velocity of enzyme 
catalysis. The study of enzymes from the standpoint of the chemistry of 
invertase has been reviewed recently in This Journal by Nelson (54). 

rate of sorption (37,90). Bechhold (3) and many others (52,96,26) d'  1scuss 
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